Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 511
1.
Article En | MEDLINE | ID: mdl-38720416

Although a series of studies confirm the bioactivities of hederagenin and its glycosides, their synergistic effects and potential mechanisms are still worthy of further exploration. This work investigated the synergistic cytotoxicity and in vitro antioxidant activity of hederagenin and hederagenin 28-O-ß-d-glucopyranoside (28-Glc-hederagenin). Hederagenin and 28-Glc-hederagenin inhibited HeLa cell growth and their combination further strengthened this effect. The combination of hederagenin and 28-Glc-hederagenin significantly increased the rate of apoptotic cells, suggesting the presence of a synergistic effect between the two substances. This combination also enhanced in vitro antioxidant activity compared with individual treatments. A network pharmacology and molecular docking-based approach was performed to explore the underlying mechanisms of hederagenin and 28-Glc-hederagenin against cervical cancer and oxidant damage. This work identified 18 related Kyoto Encyclopedia of Genes and Genome pathways, 202 related biological process terms, 17 related CC terms, and 35 related molecular function terms and then revealed 30 nodes and 196 edges. Subsequently, two highly connected clusters and the top four targets were identified. Molecular docking showed potent binding affinity of hederagenin and 28-Glc-hederagenin toward core targets associated with both cervical cancer and oxidant damage. This work may provide scientific basis for the combined use of hederagenin and its glycosides as dietary supplements.

2.
J Acoust Soc Am ; 155(5): 2934-2947, 2024 May 01.
Article En | MEDLINE | ID: mdl-38717201

Spatial separation and fundamental frequency (F0) separation are effective cues for improving the intelligibility of target speech in multi-talker scenarios. Previous studies predominantly focused on spatial configurations within the frontal hemifield, overlooking the ipsilateral side and the entire median plane, where localization confusion often occurs. This study investigated the impact of spatial and F0 separation on intelligibility under the above-mentioned underexplored spatial configurations. The speech reception thresholds were measured through three experiments for scenarios involving two to four talkers, either in the ipsilateral horizontal plane or in the entire median plane, utilizing monotonized speech with varying F0s as stimuli. The results revealed that spatial separation in symmetrical positions (front-back symmetry in the ipsilateral horizontal plane or front-back, up-down symmetry in the median plane) contributes positively to intelligibility. Both target direction and relative target-masker separation influence the masking release attributed to spatial separation. As the number of talkers exceeds two, the masking release from spatial separation diminishes. Nevertheless, F0 separation remains as a remarkably effective cue and could even facilitate spatial separation in improving intelligibility. Further analysis indicated that current intelligibility models encounter difficulties in accurately predicting intelligibility in scenarios explored in this study.


Cues , Perceptual Masking , Sound Localization , Speech Intelligibility , Speech Perception , Humans , Female , Male , Young Adult , Adult , Speech Perception/physiology , Acoustic Stimulation , Auditory Threshold , Speech Acoustics , Speech Reception Threshold Test , Noise
3.
J Hazard Mater ; 471: 134457, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38688224

Few reports have focused on using particle electrodes with polar adsorbent properties in heterogeneous electro-Fenton (EF) system to improve the degradation of hydrophilic organic pollutants (HLOPs). In this study, a hydrophilic electrode Sn-Sb/AS was prepared by supporting metals Sn and Sb on alum sludge (AS), which can effectively degrade 91.68%, 92.54%, 89.62%, and 96.24% of the four types of HLOPs, chlorpyrifos (CPF), atrazine (ATZ), diuron (DIU), and glyphosate (PMG), respectively, within 40 min. The mineralization rates were 82.37%, 78.93%, 73.98%, and 85.65% for CPF, ATZ, DIU, and PMG, respectively. Based on the analysis of Electron Paramagnetic Resonance test, quenching test, and identified anthracene endoperoxide, the degradation at the cathode was attributed to non-radical oxidation via interaction with 1O2. In contrast, the anodic oxidation occurred via direct electron transfer at the anode and/or oxidation via interaction with adsorbed •OH (•OHads) around the particle electrodes. Furthermore, the reaction sites were calculated by Density functional theory (DFT) and Fukui function, corresponding to the electrophilic attack (fA-) of 1O2 and anodic direct oxidation, besides, the radical attack (fA0) of •OH(ads). Herein, this study proposes a targeted elimination strategy for HLOPs in wastewater treatment using particle electrodes with polar adsorbent properties in EF system.

4.
World J Clin Cases ; 12(10): 1837-1843, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38660080

BACKGROUND: Percutaneous kyphoplasty (PKP) is a pivotal intervention for osteoporotic fractures, pathological vertebral compression fractures, and vertebral bone tumors. Despite its efficacy, the procedure presents challenges, notably complications arising from intradural cement leakage. Timely and accurate diagnosis, coupled with emergent intervention is imperative to improve patient prognosis. This case report illuminates the intricacies and potential complications associated with PKP, emphasizing the critical need for vigilant monitoring, prompt diagnosis, and immediate intervention to mitigate adverse outcomes. CASE SUMMARY: A 58-year-old male patient, experiencing a T7 osteoporosis-related pathological compression fracture, underwent PKP at a local hospital. Two weeks post-procedure, the patient developed paraplegic and dysuric symptoms, necessitating emergency decompression surgery. Gradual improvement was achieved, marked by the restoration of muscle strength, sensation, and mobility. CONCLUSION: PKP Intradural cement leakage following PKP is unusual and potentially fatal. Prompt imaging examinations, urgent evaluation, and the decompression surgery are essential, which help alleviate symptoms associated with spinal damage, markedly improving the overall prognosis.

5.
RSC Adv ; 14(20): 13711-13718, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38681833

Fluoride pollution in water has garnered significant attention worldwide. The issue of fluoride removal remains challenging in areas not covered by municipal water systems. The industrial aluminum electrode and natural bauxite coordinated defluorination system (IE-BA) have been employed for fluoride removal. The experiment investigated the effects of pH, current density, and inter-electrode mineral layer thickness on the defluorination process of IE-BA. Additionally, the study examined the treatment efficiency of IE-BA for simulated water with varying F- concentrations and assessed its long-term performance. The results demonstrate that the defluorination efficiency can reach 98.4% after optimization. Moreover, irrespective of different fluoride concentrations, the defluorination rate exceeds 95.2%. After 72 hours of continuous operation, the defluorination rate reached 91.9%. The effluent exhibited weak alkalinity with a pH of around 8.0, and the voltage increased by 2.0 V compared to the initial moment. By analyzing the characterization properties of minerals and flocs, this study puts forward the possible defluorination mechanism of the IE-BA system. The efficacy of the IE-BA system in fluoride removal from water was ultimately confirmed, demonstrating its advantages in terms of defluorination ability under different initial conditions and resistance to complex interference. This study demonstrates that the IE-BA technology is a promising approach for defluorination.

6.
Environ Res ; 251(Pt 2): 118671, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38479719

The low cost and high efficiency of microwave-assisted regeneration render it a viable alternative to conventional regeneration methods. To enhance the regeneration performance, we developed a coupled electromagnetic, heat, and mass transfer model to investigate the heat and mass transfer mechanisms of activated carbon during microwave-assisted regeneration. Simulation results demonstrated that the toluene desorption process is governed by temperature distribution. Changing the input power and flow rate can promote the intensity of hot spots and adjust their distribution, respectively, thereby accelerating toluene desorption, inhibiting readsorption, and promoting regeneration efficiency. Ultimately, controlling the input power and flow rate can flexibly adjust toluene emissions to satisfy the processing demands of desorbed toluene. Taken together, this study provides a comprehensive understanding of the heat and mass transfer mechanisms of microwave-assisted regeneration and insights into adsorbent regeneration.

7.
World J Hepatol ; 16(2): 241-250, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38495270

BACKGROUND: Portal vein thrombosis (PVT) is a commonthsn complication after splenectomy in patients with cirrhosis. However, the predictors of postoperative PVT are not known. AIM: To investigate the predictors of PVT after splenectomy in patient with cirrhosis. METHODS: A total of 45 patients with cirrhosis who underwent splenectomy were consecutively enrolled from January 2017 to December 2018. The incidence of PVT at 1 months, 3 months, and 12 months after splenectomy in patients with cirrhosis was observed. The hematological indicators, biochemical and coagulation parameters, and imaging features were recorded at baseline and at each observation point. The univariable, multivariable, receiver operating characteristic curve and time-dependent curve analyses were performed. RESULTS: The cumulative incidence of PVT was 40.0%, 46.6%, and 48.9% at 1 months, 3 months, and 12 months after splenectomy. Multivariable analysis showed that portal vein diameter (PVD) ≥ 14.5 mm and monthsdel end-stage liver disease (MELD) score > 10 were independent predictors of PVT at 1 months, 3 months, and 12 months after splenectomy (P < 0.05). Time-dependent curve showed that the cumulative incidence of PVT was significantly different between patients with MELD score ≤ 10 and > 10 (P < 0.05). In addition, the cumulative incidence of PVT in the PVD ≥ 14.5 mm group was significantly higher than that in the PVD < 14.5 mm group (P < 0.05). CONCLUSION: Wider PVD and MELD score > 10 were independent predictors of PVT at 1 months, 3 months, and 12 months after splenectomy in patient with cirrhosis.

8.
Onco Targets Ther ; 17: 163-169, 2024.
Article En | MEDLINE | ID: mdl-38435840

Desmoplastic small round cell tumor (DSRCT) is a rare and highly aggressive malignancy. Most patients are diagnosed at a late stage with poor prognosis. The treatment usually includes combined intensive chemotherapy, cytoreductive surgery, radiotherapy, and targeted therapy. Due to the low incidence rate and dismal survival, there is currently a lack of case reports on DSRCT with concurrent leukemia. We report a case of a young patient who achieved disease stabilization for 14 months after receiving 6 cycles of chemotherapy and whole abdominal radiation therapy (WART), followed by consolidation treatment with anlotinib. However, the treatment was terminated due to the development of Acute Myeloid Leukemia-M5 (AML-M5). Multimodal therapy may provide a survival benefit for rare tumors that lack standard treatment. However, intensive chemotherapy and extensive radiotherapy carry a risk of inducing secondary malignancies. This is the first reported case of concurrent DSRCT and AML-M5 with short intervals between onset.

9.
ACS Omega ; 9(8): 8947-8953, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38434805

The ignition of anthracite with arc plasma has not been applied due to its low chemical effect and volatile content in anthracite. The nonequilibrium plasma generated by a microwave-induced discharge has the ability to break branch chains and aromatic ring structures by kinetic effects, which has the potential for anthracite cracking and ignition. This work investigated anthracite cracking by microwave-induced discharges under an Ar/N2 atmosphere. Results showed that the maximum levels of CO production, total gas production, and total gas generation rate occur in 20% argon content due to an increase in the number of electrons and a decrease in the total electronic states excitation rate constant with an increase in the argon content. The total gas production in plasma cracking is larger than that by pyrolysis, indicating the crack of polycyclic aromatic hydrocarbon by plasma. In addition, we attempted anthracite combustion under an 80% N2 and 20% O2 atmosphere.

10.
Adv Mater ; : e2313144, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38441371

The direct recycling of cathode materials in lithium-ion batteries is important for environmental protection and resource conservation. The key regeneration processes are composition replenishment and atom rearrangement, both of which depend on the migration and diffusion of atoms. However, for the direct recycling of degraded LiNi0.5 Co0.2 Mn0.3 O2 (D-NCM523) cathode, the irreversible phase transitions that accumulate during the long-term cycles block the Li diffusion channels with a high diffusion energy barrier, making it difficult to fully repair the layered structure and resulting in rapid capacity decay. To address the challenge, fast Li replenishment channels are rebuilt to regulate the surface phase and effectively assist the regeneration process with a reduced energy barrier. This method reduces the amount of Li supplement by >75% and shortens the sintering time (only 2 h) to fully regenerate D-NCM523, compared to general direct recycling methods. The regenerated NCM523 (LCMB-NCM523) exhibits a satisfactory repaired specific capacity of 160 mAh g-1 and excellent cycling stability, retaining 78% of its capacity after 300 cycles. In addition, LCMB-NCM523 is recycled with improved thermal decomposition peak temperature and enables 200 cycles even at 60 °C, greatly improving safety. This work proposes a promising way for the large-scale direct regeneration of layered cathodes.

11.
Mol Metab ; 83: 101927, 2024 May.
Article En | MEDLINE | ID: mdl-38553003

OBJECTIVE: Hepatic insulin resistance, which leads to increased hepatic gluconeogenesis, is a major contributor to fasting hyperglycemia in type 2 diabetes mellitus (T2DM). However, the mechanism of impaired insulin-dependent suppression of hepatic gluconeogenesis remains elusive. Delta/Notch-like epidermal growth factor (EGF)-related receptor (DNER), firstly described as a neuron-specific Notch ligand, has been recently identified as a susceptibility gene for T2DM through genome-wide association studies. We herein investigated whether DNER regulates hepatic gluconeogenesis and whether this is mediated by enhanced insulin signaling. METHODS: The association between DNER, tribbles homolog 3 (TRB3) and Akt signaling was evaluated in C57BL/6J, ob/ob and db/db mice by western blot analysis. DNER loss-of-function and gain-of-function in hepatic gluconeogenesis were analyzed by western blot analysis, quantitative real-time PCR, glucose uptake and output assay in AML-12 cells and partially validated in primary mouse hepatocytes. Hepatic DNER knockdown mice were generated by tail vein injection of adenovirus to confirm the effects of DNER in vivo. The interaction between DNER and TRB3 was investigated by rescue experiments, cycloheximide chase analysis, co-immunoprecipitation and immunofluorescence. The potential insulin-stimulated phosphorylation sites of DNER were determined by co-immunoprecipitation, LC-MS/MS analysis and site-specific mutagenesis. RESULTS: Here we show that DNER enhanced hepatic insulin signaling in gluconeogenesis by inhibiting TRB3, an endogenous Akt inhibitor, through the ubiquitin-proteasome degradation pathway. In AML-12 hepatocytes, insulin-stimulated activation of Akt and suppression of gluconeogenesis are attenuated by DNER knockdown, but potentiated by DNER over-expression. In C57BL/6J mice, hepatic DNER knockdown is accompanied by impaired glucose and pyruvate tolerance. Furthermore, the in vitro effects of DNER knockdown or over-expression on both Akt activity and hepatic gluconeogenesis can be rescued by TRB3 knockdown or over-expression, respectively. In response to insulin stimulation, DNER interacted directly with insulin receptor and was phosphorylated at Tyr677. This site-specific phosphorylation is essential for DNER to upregulate Akt activity and then downregulate G6Pase and PEPCK expression, by interacting with TRB3 directly and inducing TRB3 proteasome-dependent degradation. CONCLUSIONS: Taken together, the crosstalk between insulin-Akt and DNER-TRB3 pathways represents a previously unrecognized mechanism by which insulin regulates hepatic gluconeogenesis.


Cell Cycle Proteins , Gluconeogenesis , Insulin , Liver , Mice, Inbred C57BL , Proteasome Endopeptidase Complex , Signal Transduction , Animals , Humans , Male , Mice , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Diabetes Mellitus, Type 2/metabolism , Hepatocytes/metabolism , Insulin/metabolism , Insulin Resistance , Liver/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Proto-Oncogene Proteins c-akt/metabolism
12.
Hortic Res ; 11(2): uhad269, 2024 Feb.
Article En | MEDLINE | ID: mdl-38333731

The subfamily Agavoideae comprises crassulacean acid metabolism (CAM), C3, and C4 plants with a young age of speciation and slower mutation accumulation, making it a model crop for studying CAM evolution. However, the genetic mechanism underlying CAM evolution remains unclear because of lacking genomic information. This study assembled the genome of Agave hybrid NO.11648, a constitutive CAM plant belonging to subfamily Agavoideae, at the chromosome level using data generated from high-throughput chromosome conformation capture, Nanopore, and Illumina techniques, resulting in 30 pseudo-chromosomes with a size of 4.87 Gb and scaffold N50 of 186.42 Mb. The genome annotation revealed 58 841 protein-coding genes and 76.91% repetitive sequences, with the dominant repetitive sequences being the I-type repeats (Copia and Gypsy accounting for 18.34% and 13.5% of the genome, respectively). Our findings also provide support for a whole genome duplication event in the lineage leading to A. hybrid, which occurred after its divergence from subfamily Asparagoideae. Moreover, we identified a gene duplication event in the phosphoenolpyruvate carboxylase kinase (PEPCK) gene family and revealed that three PEPCK genes (PEPCK3, PEPCK5, and PEPCK12) were involved in the CAM pathway. More importantly, we identified transcription factors enriched in the circadian rhythm, MAPK signaling, and plant hormone signal pathway that regulate the PEPCK3 expression by analysing the transcriptome and using yeast one-hybrid assays. Our results shed light on CAM evolution and offer an essential resource for the molecular breeding program of Agave spp.

13.
Intractable Rare Dis Res ; 13(1): 42-50, 2024 Feb.
Article En | MEDLINE | ID: mdl-38404731

Interferon-inducible transmembrane (IFITM) are a family of small proteins localized to plasma and endolysosomal membranes. Their functions beyond restricting viral entry and replication have been revealed in recent years. IFITM5 is involved in bone mineralization and is an osteogenic cell surface marker. IFITM1 and 3 interact with desmin and myosin, and are involved in myogenic differentiation. This study found upregulation of Ifitm2 during osteogenic differentiation of C3H10T1/2 cells. This positively correlated to the expression of osteogenic differentiation markers Col1a1, Alp, Runx2, and Ocn. Knockdown of Ifitm2 by siRNAs inhibited osteogenic differentiation, calcium deposition, and osteogenic marker expression of C3H10T1/2 cells. The osteoblast transcriptome revealed that knocking down Ifitm2 affected the expression Wnt signaling pathway-related genes, including Wnt family members, their receptors Lrp, Frizzled, and Lgr, and transmembrane molecule Rnf43 that suppresses the Wnt signaling pathway. Luciferase assays indicated enhancement of canonical Wnt signaling pathways by Ifitm2 overexpression. Furthermore, IFITM2 was colocalized in the metaphyseal bone and growth plate of the mouse tibial bone with SP7, a transcription factor essential for osteoblast differentiation and bone formation. These findings reveal a possible novel function and potential mechanisms of Ifitm2 in osteogenic differentiation.

14.
World J Clin Cases ; 12(5): 1004-1009, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38414607

BACKGROUND: Non-ketotic hyperglycaemic (NKH) seizures are a rare neurological complication of diabetes caused by hyperglycaemia in non-ketotic and non-hyperosmotic states. The clinical characteristics of NKH seizures are atypical and lack unified diagnostic criteria, leading to potential misdiagnoses in the early stages of the disease. CASE SUMMARY: This report presents a rare case of NKH seizures in a 52-year-old male patient with a history of type 2 diabetes mellitus. We performed comprehensive magnetic resonance imaging (MRI) studies at admission, 12 d post-admission, and 20 d post-discharge. The imaging techniques included contrast-enhanced head MRI, T2-weighted imaging (T2WI), fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging, susceptibility-weighted imaging, magnetic resonance spectroscopy (MRS), and magnetic resonance venography. At the time of admission, T2WI and FLAIR of the cranial MRI showed that the left parieto-occipital cortex had gyrus-like swelling and high signal, and subcortical stripes had low signal. MRS showed a reduced N-acetylaspartate peak and increased creatine and choline peaks in the affected areas. A follow-up MRI 20 d later showed that the swelling and high signal of the left parieto-occipital cortex had disappeared, and the low signal of the subcortex had disappeared. CONCLUSION: This case study provides valuable insights into the potential pathogenesis, diagnosis, and treatment of NKH seizures. The comprehensive MRI findings highlight the potential utility of various MRI sequences in diagnosing and characterizing NKH seizures.

15.
Chem Commun (Camb) ; 60(22): 3067-3070, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38386357

MnO2-Mn3O4 heterostructure materials are applied in aqueous magnesium ion energy storage for the first time. The heterostructure yields an exceptionally high pseudocapacitance contribution, resulting in a specific capacitance of 313.5 F g-1 at 1 A g-1, which contrasts with that of MnO2 (108.8 F g-1) and Mn3O4 (123.5 F g-1). Additionally, it shows potential for practical applications as a cathode for magnesium ion hybrid supercapacitors (MHS).

16.
Mol Carcinog ; 63(6): 1092-1105, 2024 Jun.
Article En | MEDLINE | ID: mdl-38415870

Colorectal cancer (CRC) is a common digestive tract tumor with the third incidence and death in the world. There is still an urgent need for effective therapeutic targets and prognostic markers for CRC. Herein, we report a novel potential target and marker, Chordin like-1 (CHRDL1). The function of CHRDL1 has been reported in gastric cancer, breast cancer, and oral squamous cell carcinoma. However, the biological effect of CHRDL1 in CRC remains unrevealed. Transwell and tube formation experiments were used to determine the biological function of CHRDL1. Western blot and rescue experiments were used to determine the specific mechanisms of CHRDL1. Results showed CHRDL1 is significantly downregulated in CRC cell lines and tissues. In vitro, experiments confirmed that CHRDL1 can inhibit cell growth, migration, invasion, angiogenesis and reverse epithelial-mesenchymal transformation. In vivo, experiments proved that it can inhibit tumor growth and metastasis. Mechanistically, we newly find that CHRDL1 exerts biological functions through the transforming growth factor-beta (TGF-ß)/vascular endothelial growth factor signaling axis in vitro and in vivo. Therefore, we concluded that CHRDL1 reduces the growth, migration, and angiogenesis of CRC cells by downregulating TGF-ß signaling. Our new findings on CHRDL1 may provide a basis for clinical antiangiogenesis therapy and the prognosis of CRC.


Cell Movement , Cell Proliferation , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Neovascularization, Pathologic , Signal Transduction , Transforming Growth Factor beta , Vascular Endothelial Growth Factor A , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Animals , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Mice , Transforming Growth Factor beta/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mice, Nude , Female , Neoplasm Metastasis , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Angiogenesis
17.
Heliyon ; 10(3): e25237, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38352764

Objectives: To summarize current evidence about the influence of body composition on the prognosis of patients with hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) treatment. Methods: Public databases were systematically searched to identify relevant studies published from the inception of the database up to May 2023. Studies that evaluated the association between body composition and clinical outcomes in HCC patients who underwent TACE were included. A pre-designed table was applied to summarize relevant information. Meta-analysis was performed to estimate the association of body composition with overall survival. Results: Fourteen studies were included in this review, including 3631 patients (sample size range: 56-908, median 186). All body composition measurements (including skeletal muscle area, visceral and subcutaneous adipose area, and bone mineral density) were based on computer tomography. The commonly used parameter was skeletal muscle index at 3rd lumbar vertebra level (8/14). Three studies evaluated the correlations of body composition changes with the prognosis after TACE. Most studies (12/14) identified body composition parameters as an independent indicator for overall survival, progression-free survival, and treatment response rate. The hazard ratio of different body composition parameters ranged from 1.01 to 2.88, and hazard ratio of body composition changes ranged from 1.88 to 5.93. The pooled hazard ratio of sarcopenia for overall survival was 1.38 (95 %CI: 1.20-1.58). Conclusions: Body composition seems to be an important prognostic factor for a poorer clinical outcome after TACE treatment in patients with hepatocellular carcinoma. Future prospective studies with a larger sample size are required to confirm these findings. Registration study: This study has been prospectively registered at the PROSPERO platform (https://www.crd.york.ac.uk/prospero/) with the registration No. CRD42022345602.

18.
Opt Express ; 32(3): 4400-4412, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38297642

We investigate the microscopic hyperspectral reconstruction from RGB images with a deep convolutional neural network (DCNN) in this paper. Based on the microscopic hyperspectral imaging system, a homemade dataset consisted of microscopic hyperspectral and RGB image pairs is constructed. For considering the importance of spectral correlation between neighbor spectral bands in microscopic hyperspectrum reconstruction, the 2D convolution is replaced by 3D convolution in the DCNN framework, and a metric (weight factor) used to evaluate the performance reconstructed hyperspectrum is also introduced into the loss function used in training. The effects of the dimension of convolution kernel and the weight factor in the loss function on the performance of the reconstruction model are studied. The overall results indicate that our model can show better performance than the traditional models applied to reconstruct the hyperspectral images based on DCNN for the public and the homemade microscopic datasets. In addition, we furthermore explore the microscopic hyperspectrum reconstruction from RGB images in infrared region, and the results show that the model proposed in this paper has great potential to expand the reconstructed hyperspectrum wavelength range from the visible to near infrared bands.

19.
Mater Horiz ; 11(7): 1719-1731, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38277153

Efforts to enhance the efficiency of electrocatalysts for the oxygen reduction reaction (ORR) in energy conversion and storage devices present formidable challenges. In this endeavor, M-N4-C single-atom catalysts (MN4) have emerged as promising candidates due to their precise atomic structure and adaptable electronic properties. However, MN4 catalysts inherently introduce oxygen functional groups (OGs), intricately influencing the catalytic process and complicating the identification of active sites. This study employs advanced density functional theory (DFT) calculations to investigate the profound influence of OGs on ORR catalysis within MN4 catalysts (referred to as OGs@MN4, where M represents Fe or Co). We established the following activity order for the 2eORR: for OGs@CoN4: OH@CoN4 > CoN4 > CHO@CoN4 > C-O-C@CoN4 > COC@CoN4 > COOH@CoN4 > CO@CoN4; for OGs@FeN4: COC@FeN4 > CO@FeN4 > OH@FeN4 > FeN4 > COOH@FeN4 > CHO@FeN4 > C-O-C@FeN4. Multiple oxygen combinations were constructed and found to be the true origin of MN4 activity (for instance, the overpotential of 2OH@CoN4 as low as 0.07 V). Furthermore, we explored the performance of the OGs@MN4 system through charge and d-band center analysis, revealing the limitations of previous electron-withdrawing/donating strategies. Machine learning analysis, including GBR, GPR, and LINER models, effectively guides the prediction of catalyst performance (with an R2 value of 0.93 for predicting ΔG*OOH_vac in the GBR model). The Eg descriptor was identified as the primary factor characterizing ΔG*OOH_vac (accounting for 62.8%; OGs@CoN4: R2 = 0.9077, OGs@FeN4: R2 = 0.7781). This study unveils the significant impact of OGs on MN4 catalysts and pioneers design and synthesis criteria rooted in Eg. These innovative findings provide valuable insights into understanding the origins of catalytic activity and guiding the design of carbon-based single-atom catalysts, appealing to a broad audience interested in energy conversion technologies and materials science.

20.
Langmuir ; 40(2): 1515-1523, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38176104

Marine oil spills pose a serious threat to the marine ecological environment. Phase-selective organogelators (PSOGs) are ideal candidates for oil spill gelation when used in combination with a mechanical recovery method. However, the toxicity of an organic solvent carrier has become a key problem when it is applied in the remediation of marine oil pollution. In this study, through an inexpensive and nontoxic ionic cross-linking and freeze-drying method, we successfully developed composite oil gelling agents that used a biomass sodium alginate aerogel as the carrier of 12-hydroxystearic acid (12-HSA). Simultaneously, carboxylated cellulose nanofibers (CNF-C) with large specific surface area and graphene oxide (GO) with excellent mechanical properties as reinforcing fillers were combined with an alginate matrix. 12-HSA, as a green and inexpensive organic gelator, was uniformly loaded on the aerogels by vacuum impregnation. The sodium alginate aerogel was capable of absorbing and storing oil due to its three-dimensional network skeleton and high porosity. Rheological studies have demonstrated that the organic gelator 12-HSA can be released from the aerogel substrate and self-assemble to form an oleogel with the absorbed oil quickly. The synergistic effect between absorption and congelation endows the composite oil gelling agent with efficient oil spill recovery capability. Based on eco-friendly, biodegradable, and simple synthesis methods, this composite oil gelling agent shows great potential for application in marine oil spill recovery.

...